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The paper gives a general theory designed mainly for application to the two types of vacuum lamps
commonly used in optical pyrometry: namely, the heavy-current strip lamps which serve as
standards for calibration and the fine filament lamps embodied in the pyrometers themselves.
Simplifying assumptions are made regarding the properties of tungsten, namely, that resistivity
and emissivity both vary directly as the absolute temperature, while thermal conductivity remains
constant, These allow a complete solution of the main differential equation governing tempera-
ture distribution. A comparison of results obtained in this way with a few computations,
specially undertaken without resort to the resistivity and emissivity assumptions, shows that the
simplifications suffice for all practical purposes. Further, the general agreement between the
calculated and observed characteristics of lamps suggests that no great error results from the
assumption of constant thermal conductivity. However, other simplifications are also briefly
considered.

The problems treated on the basis indicated are as follows: the distribution of temperature along
a filament of known dimensions, carrying a constant current and with its ends at a constant tem-
perature; the voltage on, and resistance of, such a filament; the temperature coefficients of calibra-
tion, i.e. the change in maximum temperature with change in surrounding temperature with the
filament run at constant amps, volts or ohms, as the case may be; the modifications of the above-
mentioned characteristics due to appreciable gradients in the leads, and the asymmetry of distribu-
tion induced by the Peltier and Thomson effects. These subjects are treated generally for short
filaments and also for the simpler case of infinitely long filaments to which, in fact, many lamps
tend to conform. In addition to these matters, which are all concerned with the steady state of tem-
perature distribution, the approach to that state is considered under conditions giving an estimate
of the maximum speed of response attainable in practice.

Y B \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

* Department of Mathematics, University College of North Staffordshire.
1t Emmaus House, Freshwater, Isle of Wight.

Vor. 252. A. 1016. (Price 115. 6d.) 57 [Published 5 May 1960

[ ,Q
o) Y
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to @%I%

Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. IINOIY
WWWw.jstor.org


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

464 D. C. RUSSELL AND F. H. SCHOFIELD ON

Numerical examples of the formulae developed are given for typical lamps and some of these are
compared with other calculations and with observations. For pyrometer lamps a table is given
showing how their main characteristics can be estimated, with fair accuracy, merely from a know-
ledge of the filament dimensions, or, in the case of existing lamps, by means of a simple test.
Suggestions are also made for possible modifications in the design of standard strip lamps.

1-1. INTRODUCTION

The vacuum lamp, with tungsten filament, is used for precise measurement in several
fields of investigation, notably in photometry, colour pyrometry, and brightness, or
monochromatic, pyrometry. Perhaps the highest demands are made on it in brightness
pyrometry, where it provides the means for realizing the International Temperature Scale
from the melting point of gold (1063 °C) upwards. The brightness pyrometer is also much
used below 1063 °C—in fact down to 650 °C or near the visible limit—and in part of its
wide range a precision of 1 °C, or better, is sometimes aimed at. This paper, while giving
a theoryapplicable generally to tungsten vacuum-lamps, is concerned mainlywith problems
arising out of the use of such lamps in brightness pyrometry.

In the best form of brightness pyrometer, that of the disappearing-filament type, the
brightness, for a certain wavelength, of the hottest part of the filament is matched against
that of the object, and this brightness is reproduced in terms of some characteristic of the
lamp: for example, the current through the filament, the overall voltage on the lamp, or its
overall resistance. It is, of course, of first importance that the lamp should be stable under
all conditions met in practice, including particularly the unavoidable changes of atmospheric
temperature to which it is subjected. The elimination of the effect of such changes on the
calibration of the lamp is best secured by employing a filament very long in proportion to its
cross-section and dealing with the current characteristic, which is not directly affected by
the resistance of the leads. This is the universal practice in laboratory work of the highest
precision. The requirements of industrial pyrometry are less exacting and lamps departing
from the high standards of the laboratory, and a characteristic other than current, may with
advantage be employed to gain other desiderata, particularly in relation to the portability
of the instrument and the interchangeability of lamps.

In addition to the lamp embodied as an integral part of the pyrometer, special lamps,
calibrated in terms of the International Temperature Scale, are employed as standards for
calibrating pyrometers and for international comparison of temperature scales. To provide
a field of view sufficiently large for the purpose, the filament consists of tungsten strip of
considerable width. The highest standards of precision and stability are demanded of such
lamps, which call for special design.

The various problems connected with pyrometer and standard lamps can be tackled on
a purely empirical basis, and much valuable work of this kind has been done; but there is
obvious advantage in developing an appropriate theory. For example, it would be useful
to be able to calculate the temperature distribution, current, voltage and resistance of a
filament of known dimensions and physical constants, in terms of the temperature of its
centre, ends and surroundings.

The theories so far advanced have not dealt specifically with all such points. The most
noteworthy of the earlier contributors appear to have been Worthing, Langmuir and his
associates, and Ribaud. Worthing (1922, 19144) has given separate treatments of the
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temperature distribution in a filament in regions near its hottest part, and for an infinite
filament in the region of a cooling junction; Langmuir, MacLane & Blodgett (1930) have
given a general theory of wide application making use of the empirical laws for the pro-
perties of tungsten and nickel, but which would apparently involve laborious calculation in
dealing with the problems indicated above; Ribaud & Nikitine (1927) have, in effect,
extrapolated the theory of Worthing (1922) to the cold ends of the filament and so obtained
a simple expression for the temperature distribution along its whole length (see also the
appendix to the present paper). The several works referred to above were carried out long
before the present work was planned; recently papers have appeared dealing with some of
the more general aspects of the heat conduction in a thin rod electrically heated in vacuo
(Jain & Krishnan, 19544, b,¢,d; 19554,5) but the scope of these did not include any new
attempt to obtain a complete solution, in terms of known functions, of the fundamental
differential equationsinvolved ; for short filaments the solution of Ribaud & Nikitine was used.

Our approach to the problems connected with the vacuum lamp has been somewhat
different from any of the above. Confining attention to the tungsten-filament lamp, which is
the most widely used type, we have examined critically the data for the properties of tungsten
and have ventured to make certain simplifying assumptions concerning them which permit
of a complete solution of the main differential equation governing the distribution of
temperature along the filament. The validity of our more important assumptions has,
with the co-operation of the National Physical Laboratory, been tested in a few specimen
cases by comparing the results yielded by them with those not involving any such simpli-
fications. The other matters dealt with include a brief consideration of further approxima-
tions; the modifications of distribution due to the Peltier and Thomson effects and to the
material and dimensions of the leads; the effect of changes of air temperature on the lamp
calibration. In addition we have given some attention to the approach to the steady state,
a matter which is of importance in relation to standard strip lamps.

1-2. THE PHYSICAL CONSTANTS OF TUNGSTEN

The physical properties of tungsten which in the main determine the equilibrium distri-
bution of temperature in a filament, are the emissivity and resistivity, if the filament is
infinitely long; and, in addition, the thermal conductivity, if the filament is short. These
properties give a temperature distribution independent of the direction of the current.
Further there are the Peltier and Thomson effects, tending to disturb the symmetry of
distribution.

The more important properties of tungsten, which have been named above, are liable to
be affected by the purity and physical condition of the metal; but in a well-aged filament
they seem to be reasonably stable, as is witnessed by the use of such filaments as photometric
and pyrometric standards. We deal below with the data for the three constants, their changes
with temperature and their interrelations.

1-2:1. Thermal conductivity
A cursory examination of any collection of physical constants reveals that thermal con-
ductivity is among the most difficult of these to determine. This is exemplified in table 1

relating to tungsten.
57-2
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466 D. C. RUSSELL AND F. H. SCHOFIELD ON

The differences shown are not surprising in view of the fact that the measurements have
been made on fine wires and depend essentially on two difficult determinations, namely, the
temperature gradient along the wire and the heat conducted by it. The last-mentioned is
derived from the difference between two large quantities, namely, the heat generated by
the current and that lost by radiation. Under these conditions precise determinations are
hardly to be expected, especially of a second-order effect like the change of thermal con-
ductivity with temperature.

TaBLE 1. THERMAL CONDUCTIVITY OF TUNGSTEN (W cm/°C)
Estimated or extrapolated values in ().

temperature (°K)
A

authority 300 1000 1500 2508
Coolidge 1-47 o — —
Worthing (19145) — (0-73) 0-98 148
Langmuir (1916 4) (1-14) 1-14 1-14 1-14
Worthing (1917) (0-85) 1-01 1-25

Weber (1918) 1-60

Zwikker (1925) — (0-98) 1-12 1-38
Forsythe & Worthing (1925) (0-63) 0-84 0-99 1-21
Kannuluik (1933) 1-65 — — —
Michels & Cox (1936) 1-66 — — —
Osborn (1941) — (1-19) 111 1-03
electron theory* (1-23) o — —

* The value shown is obtained by assuming Lorenz’s function kp/ T to be 232 x 10-3, the average value
for the pure metals at room temperature, and the resistivity at 300 °K to be 5:64 x 108,

Coming to the actual values, it may be mentioned that Forsythe & Worthing give the
thermal conductivity as increasing in a nearly linear way for temperatures between 1000
and 2800 °K (only three of their values are entered in the table) ; these values and those of
Worthing (19177) were in fact corrected from those of Worthing (19144) on the basis of new
determinations of a true temperature scale for tungsten. As a check on this variation we have
extrapolated their values to 300 °K ; it will be seen that the resultant figure is much lower
than any in the table. The values attributed to Langmuir were recalculated by him from
the observations of Worthing (19144) on the basis of his own determinations of the total
emissivity of tungsten (Langmuir 19165), which differed considerably from those of the
observers named. Langmuir thus arrives at a nearly constant value for the thermal con-
ductivity, which does not differ greatly from the other figures at 300 °K. In view of the
conflicting data and of the fact that a number of pure metals show only small change in
value, either positive or negative, with rising temperature, we feel justified in assuming a
constant value for the thermal conductivity.

1-2-2. Resistivity and total emissivity

The relation between these two quantities can be determined under conditions practically
identical with those in a tungsten-filament lamp. Thus if a very long filament is heated
electrically in vacuo and thin potential leads are applied to a central length of the filament,
sensibly at a uniform temperature, the measurement of the current through, and the
potential drop on, this length, gives both its resistance and the energy radiated from it. To
obtain from these data the actual resistivity and total emissivity requires, in addition to
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A THEORY OF THE TUNGSTEN VACUUM-LAMP 467

details of dimensions, a determination of the true temperature of the filament. The establish-
ment of the temperature relation of either resistivity or emissivity would serve to fix the other,
but in both cases the measurement of filament temperature presents great difficulty. If it
were possible to apply the technique of resistance thermometry to tungsten (which does not
seem to have been attempted) the measurement of temperature could be made with
considerable precision, since it would be that of the medium surrounding the bulb—such as,
for example, the atmosphere inside a furnace, or a metal at its melting point. In this way
Callendar (1899) was able to measure the resistance of platinum at the melting point of
palladium (1825 °K) with a precision equivalent to 1 or 2°C. However, the plan usually
adopted is to measure by optical pyrometer the brightness temperature of the filament, i.e. that
of a black body which directly matches the filament in brightness. This measurement would
apply to a certain wavelength (generally about 0-65 p) and from a knowledge of the spectral
emissivity for this wavelength, determined by separate experiment, the true temperature of the
filament would be obtained. The corrections from brightness to true temperature range from
some 35° at a true temperature of 1000 °K to 225° at 2500 °K (see Ribaud 1931, table 67),
and suggest the possibility of appreciable error. When a filament is partially obscured by
absorptive material (such as a glass bulb) we designate as its apparent temperature that of a
black body which matches the obscured filament in brightness. Thus apparent temperature
is a function of the optical arrangement as well as of emissivity, and corrections for both must
be made in converting to true temperature; e.g. a tungsten filament at a true temperature of
1400 °K would have a brightness temperature at 0-665 u of 1330 °K, and an apparent
temperature, as viewed from outside a clear glass envelope with 8 9, absorption, of 1323 °K
(1050 °C). There are other methods, in addition to that outlined above, for determining the
relation of total emissivity to true temperature, but they all present great experimental
difficulties.

Dealing first with the total radiation the energy radiated (W) may be taken to vary with
the true temperature (7)) expressed in absolute measure (°K) in either of the forms

Wypoc T? or Wirecep T4, (1-2-1)

where ¢, is the total emissivity at temperature 7. Forsythe & Worthing (1925) gave y in the
above formula as ranging from 5-35 at 1000 °K to 4-59 at 2500 °K. On the other hand,
Langmuir (1916 4) gives a constant y of 4-96. We have adopted the value of Langmuir since
it accords with his constancy of thermal conductivity which we have already accepted.
For the purpose of our approximation we take the value of 5 for y, which is equivalent to
making ¢, vary directly with 7.

Coming to resistivity (pg), if its relation to 7 is assumed to be of the form

proc TP, (1-2-2)

then Forsythe & Worthing give £ as 1-20 from 1000 °K upwards, but steadily increasing to
1-3 at 300 °K. However, Langmuir gives a constant value of 1-24. For the purpose of our
approximation we take a value of 1-00 for §. This represents perhaps the greatest departure
from the published data for the three constants, but some justification for it may be sought
in the relation of resistivity to the other two. Thus, if we consider the central part of an
incandescent filament, most of the heat dissipated will be by radiation, so that here resistivity
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468 D. C. RUSSELL AND F. H. SCHOFIELD ON

and emissivity predominate in determining temperature. On the other hand, resistivity and
thermal conductivity become the more important factors towards the ends of the filament.
It may be useful, therefore, to consider the relations between the two pairs of constants.

1-2:3. Relation between resistivity and emissivity
The following theoretical relation has been derived by Aschkinass (19o5) for the ‘total

normal emissivity’ e,poc (pT)k (1-2-3)
nT :

It will be observed that our assumption of p varying directly with 7" would also make ¢, so
vary, which agrees with our assumption for emissivity. We are not, however, strictly con-
cerned with ¢, ;. but with ¢, or the ‘hemispherical total emissivity’.* For this latter entity a
theoretical expression has also been derived, the first term of which is of the form of (1-2-3)
so that our assumption would still hold approximately.

1-2-4.  Relation between thermal conductivity and resistivity

According to Lorenz, the thermal conductivity (£) and resistivity (p) of a pure metal are
connected to the absolute temperature (7°) by the relation

kp|T = constant.

This means that if £ is constant, p would vary directly with 7, which would make our
assumptions, as to these two constants, mutually consistent. There is very little evidence of
the validity of the Lorenz relation in the case of tungsten (though see Langmuir 1916 ), but it
is known to hold closely for all the pure metals tested in the region of 300 °K, while for several
hundred degrees above 300 °K the limited data available show that it still holds approxi-
mately for a number of metals.

2. THEORY

The whole of this section, except for §2-3, is based on the assumptions set out in the pre-
ceding section, namely, of constant thermal conductivity, and of resistivity and emissivity
varying directly with absolute temperature. In §2-3 the possibilities of less drastic sim-
plifications are briefly explored.

The subjects treated are the distribution of temperature and resistance along the filament
(both of finite and infinite length) under specified conditions: the modification of these
induced by the dimensions and material of the leads, and by the Peltier and Thomson
effects: the effect on calibration data of varying ambient temperature: the speed of response
of filaments.

The main symbols used are as follows:

T true temperature at a point on the filament, in absolute measure (° K)
ks thermal conductivity of filament at temperature 7"
pr resistivity of filament at temperature 7°
¢, emissivity or absorptivity of filament at temperature 7"
o constant of total black-body radiation
¥ Thomson coefficient of filament at temperature 7°
II; Peltier coefficient between filament and lead at temperature 7;

* For definition of terms, and an authoritative discussion of emissivity, see Worthing (1941).
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cross-sectional area of filament

perimeter of cross-section

semi-length of filament

cross-sectional area of a lead

thermal conductivity of a lead

length of a lead

temperature of surroundings

temperature of filament end

maximum temperature of finite filament with current ¢
temperature of infinite filament

NS NS

©

NNS

2-1. FINITE FILAMENT: TEMPERATURE DISTRIBUTION AND RESISTANCE
2:1-1. Temperature distribution

The differential equation for the steady flow of heat across an element, dx in thickness
and at a temperature 7, of a filament is

d d7\ . .
— g5 (ke ) = 5T —aper T—T); (211)

with our assumptions

pr=pT, er=¢6T, kr==Fk (p,,é6,kconstant),

(2-1-1) becomes — Ak d?T/dx? = (c*po/A+opey T) T —ape, T
or Ak d?T/dx? = ape,(T°—BT),
where* B = Ti+c?py|Aape,.

Hence, upon integrating,

dT ope
(a) 3‘?4 ]‘; (76—38BT?+ constant),

where the constant is determined by d7/dx = 0 when T'=1T,, T,, being the maximum
temperature in the filament. The bi-cubic function of 7 yields an elliptic function on integra-
tion, a convenient treatment being as follows. Substitute z = (77/7,,)?, so that d7T/dx = 0

when z = 1, and put @ = 3B/T%; we then obtain

d
(Elé) _4dape, T, z(1—2) (224z+1-Q).

If we write A = 4[/(4Q —3) —1], theroots of z2++z+1—@Q = 0 are L and — (1+1); we note
that, in terms of our basic quantities,

~slL (mr ) -2 ]-1)

If we then put g”‘LA/ Ak 3 :l
T T2A Lope, A(A+2)

* We can also write B = T4, where T, is the temperature which would be maintained by the current ¢
if the filament were infinite; see equation (2-2-1).
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470 D. C. RUSSELL AND F. H. SCHOFIELD ON
the differential equation becomes
dz\2 4
(a;) = ey 212 (A=2) (4 1+42). (2:1-2)

This can be reduced to a Legendre form
v = £[(1—tsin? )1 dg = EF(g, x,) + constant,

or, if the origin is at the point of maximum temperature,
X = gF(¢>K1)> (2-1-3)
where the modulus and amplitude are given by

K2 = (20 + 1)/(/12+2A),}
sin?¢ = A(1—z)/(A—z).

It can be shown that the condition A > 1 is always satisfied which makes «? < 1 as required.
The above equations are fundamental throughout this paper and have been used for
numerical computation with Legendre’s Tables, in conjunction with the corrections given
by Kaplan (1948) (see also Fletcher 1948).

For any filament of given cross-section, there are four variables to be taken into account,
namely, current (¢), length (2L), temperatures of centre and ends (7, and 7; for a sym-
metrical distribution). Given any three of these, the fourth may be obtained from (2-1-3),
generally by trial. But the effect of leads has also to be considered. If these are so heavyas to
have no appreciable temperature gradient, 7; becomes equal to 7 (temperature of sur-
roundings) and can be treated as constant. Equation (2:1-3) then gives the temperature
distribution for any two of the remaining variables, ignoring the small disturbance due to
the Thomson effect. With appreciable gradient in the leads, special treatment is required to
determine 7}, as is shown in § 2-4 below, but (2-1-3) would still apply to the distribution in the
filament. It may be added that (2-1-3) can be inverted to yield

T, Jlcn (x/E)
T == , (215
JiA—sn (1)) )
in which case use may be made of the Smithsonian elliptic functions tables (Spenceley &
Spenceley 1947).

(2-1-4)

2:1-2. Resistance

To obtain an expression for the resistance » of any section of the filament we use

Adr = ppdx,
so that, writing P k 3 ]
= Y:J[Aopeo 20-+1
and substituting in (2-1-2),
dz\? 4
(a‘;) = 2EED) (1—-2) (A—2) (A+1+2) (2:1-6)

which, with origin at 7" = T, yields the solution
r=nF(0,«k,), (2:1-7)
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A THEORY OF THE TUNGSTEN VACUUM-LAMP 471
where the modulus and amplitude are given by
K= (\+2)/(20+1),

(2A-+1) (1—2)
A+2) (A—z)

We note that these are related to values in (2-1-4) as follows:

sin?f =

sinf = k;sing and Aki«% = 1. (2-1-8)
As before, (2:1-7) may be inverted to give
T =T, J[A—(A—=1)[dn?(r[7)]. (2:1-9)

(2-1+7) or (2-1-9) gives the relation between temperature and resistance. If it is desired to
relate length with resistance we eliminate z = (7/T,,)? between (2-1-5) and (2-1-9) and so

obtain, on simplification, kysn (x/E, k;) = sn (7/7, k). (2:1-10)

2:2. INFINITE FILAMENT : TEMPERATURE DISTRIBUTION AND RESISTANCE

The preceding section (§2-1) covers any filament, however short, but many pyrometer
filaments are so long, relative to cross-section, as to differ little from those infinitely long.
Consequently it is useful to develop the relations for these latter. We first give the relation
between current and temperature

pold = open( T—T?),
where p., = pr_, €. = €7, which, on applying our assumptions, becomes
& = (apey Afpo) (T4—T%); (2:211)

T*is always small relative to 7% so that ¢ cc T2 approximately. Asa check we note that this
would give the ratio of currents for 2000 and 1000 °K (about the limits met in pyrometry)
to be 4. The published data of Forsythe & Worthing (1925) would make this ratio 3-97,
which tends to confirm the validity of our assumptions.

We now consider a finite filament sufficiently long that in its central section the tem-
perature is uniform and indistinguishable from that of a similar infinitely long filament
carrying the same current. The resistance and temperature distribution near a cold end of
the filament can then be readily derived from the formulae in §2-1. Thus if we substitute for
the current the value (2:2-1) we get

A=1 and §=y,

here _ 1 4k
whe k=72 A/J[Jeo'
With z = (T/T,)?, (2:1-2) becomes
dz 2 1
& a3 (1—2) [2(2+2)]
of which the solution is 3z

— -1 /_~_
x = ptanh / 21z +-constant,

58 Vor. 252. A.


http://rsta.royalsocietypublishing.org/

PN

s |

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

472 D. C. RUSSELL AND F. H. SCHOFIELD ON
If the temperature at one end of the filament is 7} (z; = T}/T%), and x is measured from
this end
’ 1 (Ak\? L/ 3z L] 8z
= e [ -1 [_22 __tanh- i\, 2:2-2
7z (Up%) {tanh 512 tanh A/ 2+Zj} ( )

The corresponding value of the resistance measured from the end is

_ o (_k ) ,lfnt«zﬁ_ hlx/fﬂzj\ .
r=m ( Aape, tanh 3 tanh ~57 (2-2-3)

If desired, a relation may be obtained between 7 and x corresponding with (2-1:10).

A useful modification of (2-2-2) is designed to give the distance x, at which the temperature
reaches a small amount Ashort ofits final value 7.,. This enables a length of finite filament to
be chosen so as to approximate, for any fixed maximum temperature, to an infinite filament
(cf. Ribaud 1931, table 48). It can be shown that x, is given closely by

1 (Ak\Y(,, 8T, 1/ 3z ).
X ——-ﬁ(%) {gln“A—_tanh /\/*———2—}_2‘]‘}, (224:)
if, further, z; is small, the last term in the bracket can be replaced by (7;/7.,) /3. In the
corresponding expression for r, the first term in the bracket of (2:2-3) can be written

11n (675/A).

2:3. FINITE FILAMENT: CLOSER APPROXIMATION FOR TEMPERATURE DISTRIBUTION

So far the treatment has been based on the simplifying assumptions p, = p, 7T, €, = ¢, T}
k; constant. In this section the possibilities of less drastic simplifications are briefly con-
sidered.

First, we assume £, to remain constant: then if the resistivity and emissivity can be
expressed as integrable functions of T, the first stage of integration obviously presents no
difficulty, but the final stage will not generally yield a solution in terms of known functions
and so may involve a troublesome numerical process. Taking, for example, resistivity, where
our assumptions have involved the greatest departure from published data, the following
relation would no doubt give a closer approximation to accepted values

pr=po T(A+a, T+ay T?).

The presence of the second term in the bracket, yielding a 7™ term on integration, would
preclude the possibility of a discrete solution on final integration. If, however, the second
term were omitted, and the relation taken as

pr=po T(1+aT?), (2:3:1)

though the matching with accepted data would be less close, the first integration of (2-1-1)
would vyield, as before, a bi-cubic expression, reducible to a Legendre F-function. The
assumption (2-3-1) with £, and ¢, as before, could therefore be taken as the basis for a
second approximation. We have in fact worked out the complete solutions in this case,
corresponding to all those in §2-1 and, further, have considered how the two parameters
po and a could be matched to the best advantage. However, on applying these two approxi-
mations to a specimen case, we find that the first approximation (p, = p,T") yields results so
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close to the calculations of the National Physical Laboratory, free from any assumptions, as
practically to render the second approximation unnecessary (see figures for N.P.L. and
R. & S.intable 2). Accordingly the algebra for the second approximation is not reproduced
here, though two specimen results derived from it will be found in the table.

With regard to thermal conductivity, although its variation is small and not known with
any certainty, it may not be out of place to consider how a simple form of variation could be
treated. Let us assume kp = k(140 T);

then the left side of equation (2-1-1) becomes

d2T

__AkOV{TdZT (dT)Z}'

a7 T \dx

If we first neglect as small the term involving », and take the variations of resistivity and
emissivity to be as originally assumed, or p, of the form (2-3-1), then the first integration of
(2-1-1) will give an expression for (d 7/dx)?in terms of rising powers of 7. The approximate
expressions for d277/dx? and (d 7/dx)? can now be substituted in the v term, and on integra-
tion a second approximation obtained for (d77/dx)2. The ‘feed-back’ process could be
repeated, if necessary, and the final expression for (d 77/dx)? would be in rising powers of 7,
and have to be solved numerically.

2-4. CONDUCTION IN THE LEADS: PELTIER EFFECT
2-4-1. Lead conduction and temperature distribution

In order to get a complete picture of the temperature distribution in any lamp, itis
necessary to take account of the effect of the leads. Though no specifications have been laid
down for the materials and dimensions of leads, there is a fairly uniform pattern, at any rate
in this country, for the strip lamps used as standards. Itis convenient to consider the various
problems in relation to this particular design which is illustrated in figure 1, which shows
two sections of the lamp at right angles to each other. Here the leads are of unequal length
and are connected by the sealing-in wires to an indeterminate mass of material in the lamp
base. To permit of treatment, we assume this set-up to consist of leads of uniform section
and definite lengths connected to infinite sinks at the temperature of the surroundings, as
indicated in figure 2. It will be understood that this simplification, with its uncertainty as to
the effective length of a lead, or even as to the constancy of this length under varying condi-
tions, must give results of the nature of estimates, rather than precise determinations.

The first problem is to calculate the temperature 7; of the junction between filament and
lead, for given 7, and 7,. The condition for continuity of heat flow at this point is

dT dT
Ak, (‘&35)]- — Ak (‘&E)jw’ | (2-41)
where (d7/dx); and (d7/dx);, are the gradients at the junction in lead and filament,
respectively, and 4,, 4 and £,, £ the respective cross-sections and thermal conductivities. The
gradients and temperature distributions in filament and leads are governed by the general
differential equation (2-1-1), and the formulae for the filament have been fully worked out.

With a symmetrical distribution in the filament (of given length) and fixed values of 7}, and
58-2
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T; we could obtain by trial from (2-1-3) the current which would give any chosen value of

1;; (2:1-2) would then give the corresponding value of 4k(d 7/dx);,, and a set of values for
the last-mentioned could then be plotted for a number of 7} values. For a lead, the solution
of (2:1-1) would be required in terms of its length, current, and its two end temperatures 7,
and 7; taking a series of values for 7} with the corresponding currents (already found for the
filament), a curve could be obtained for 4, £,(d T/dx); against 7}. The intersection of the two
curves would give the required value of 7.

In view of the uncertainty of the length of lead and the laborious procedure outlined
it is worth considering whether a plausible approximation could be developed on simpler
lines. It will be seen from equation (2-1-1) that the heat generated in the lead by the current

—~
. 1Y, = ==

()

Ficure 1. Sections of a standard
strip lamp.

Ficure 2. Simplified representation
of a standard strip lamp.

tends to be compensated for by that lost in radiation from the lead, and if it is assumed that
the two are equal® the result would be a constant gradient in the leads, thus making

(ATJdx), = (T~ T/, (2:4:2)

where / is the length of the lead. Coming to the filament we have, from (2-1-2),

(%)jw — T3 (1-2) A—2) (A+1+zj)}% (2:4-3)

~ T3 {WM)}%{I_(AHH 1) sz},

" 34k +1)

AN+1) T2 (2:4-4)

the expansion being carried out only to the second term, since in practice z; = (7;/T,,)? is
small enough to justify the omission of further terms. Many filaments will, however,
approximate to one infinitely long, in which case A = 1 and we have

(0, ) 9

dx). 3Ak 472

* Formulae were developed for estimating the difference between the two, but as the assumption seemed
to be justified by the numerical results shown in tables 5 and 7, they are not reproduced here.
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Making the substitutions, (2-4-1) becomes a quadratic in 7; (which form would also result
from the substitution of (2-4-4) if preferred)

A,k (7;—T5)

A=A ng{ (2:4-6)

24kapeg) {1 B 37}2}
3 } 472)"

Some points arising from formula (2-4-6) are as follows. For any particular filament and
lead, the only variables are 7}, 7.,, ¢,. The last does not vary much with temperature—in
fact ¢, changes only by some 7 %, between 1000 and 2000 °K—so that the temperature rise of
the junction (7;—7;) varies nearly as the cube of the maximum temperature (7); the
formula applies almost exactly to an infinite filament with leads of equal or unequal length
and closely to a relatively long filament with such leads, for example to that illustrated in
figure 1 with dimensions specified in tables 2 and 5.

Another question arises in connexion with unequal leads, namely, if they result in a con-
siderable difference in temperature between the filament ends (over 300 °C is shown in
table 5, at the highest temperature), what displacement from centre would occur in the
position of maximum temperature? The distribution of temperature will be symmetrical
about this position, and for a long filament the displacement d from centre will be given
closely by the following expression, strictly applicable to an infinite filament

1 [ Ak\? _1 | 3z . 3z,
d= 21 (&T%) {tanh A/Q_Fzz—tanh J2+Zl}, (2:4-7)
where z; = (T;,/T,)?% z, = (1},/T,)? T;; and T}, being obtained from (2:4:6) when the

lengths of the leads are /;, /,, respectively.

The case of a short filament (of length 2L) with unequal leads, is more complex. First,
given 7, and T, it will usually be sufficient to calculate A by trial from (2-1-3) using an
estimated average value for 7). Then solutions of (2:4-1) in which the two sides of this
equation are given by (2-4-2) (for/ = /; and [/ = [,) and (2-4-3) yield two values 7}; and 7},—
if (2-4-3) is used the solutions would have to be graphical or by trial, while the use of (2-4-4)
would admit of a simple method of solution similar to that given by (2-4-6). The value of the
displacement 4 and a more accurate value for ¢ could then be obtained from

L+d=EF(,k,), L—d=_EF(dy k), (2-4-8)

the values ¢,, ¢, corresponding to z = z,, z = z,, respectively.

2:4-2. Peltier effect
In this section we consider the modification of temperature distribution due to any
Peltier effect between filament and leads. The heat generated or absorbed, due to this effect,
is independent of the dimensions of the two metals, but depends on the magnitude and
direction of the current, being equal to +cIl;, where II; is the Peltier coefficient for tem-
perature 7. Instead of (2-4-1) the condition for continuity of heat flow at a junction is

dT d7T
Ay ky (m) = Ak (a) +cll, (2-4-9)
J Jjw

while in place of (2-4:-6) we have for the junction temperature
A k\(T,—T,) [l = T3 (3apeg Ak)* [1 — (3T?/4T3)] +cIL,. (2-4-10)
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ITis a function of the temperature and can be derived from the thermoelectric force between

the metals by the usual relation
Il=TdE/dT.

Thus if £ can be expressed as a quadratic in 7" for the region in question, so also can IT and
(2-4-10) becomes immediately soluble, the value of ¢ being given closely enough by (2-2-1).
If, however, the expression for IT involves higher powers of 7', or if I is given in graphical,
instead of algebraic, form, the solution would have to be obtained by trial. We note that,
with equal leads, there will be two values of T reversible with the current: while with
unequal leads, there will be four values. For any pair of values the displacement from
centre of the position of maximum temperature would be obtained on the lines indicated
in the previous section.

2-5. EFFECT OF AIR TEMPERATURE CHANGES ON CALIBRATION

The lamps used in pyrometry are perhaps most often calibrated in terms of current, but
the overall resistance or voltage is sometimes employed, and in bridge circuits some combina-
tion of current and resistance other than voltage. In this section it is proposed to consider the
effect of normal variations of air temperature on these characteristics.

2:5-1. Temperature coefficients: definitions and calculation

Suppose that y is some specified characteristic of the lamp depending on current and/or
resistance; then the temperature coeflicient (d7,,/dT;), is defined as the change in 7, per
unit change in 7, when y is held constant. This temperature coefficient depends on two
quantities: one due to changes in radiation, which we may denote by 07,,/d7, (where both y
and the junction temperatures 7; remain fixed) ; and the other due to changes in end conduc-
tion, denoted by d7,,/0T; (where y and 7| are fixed). To obtain the overall temperature
coeflicient of the lamp we then need to find the rate of change of 7; with 7;. In practice
equation (2-4-6) (with 7, = T,,) is quite adequate for this purpose, and we find at once that

dT;  4T2—3T?

= . 2:5-1
d7,  4T2+3T7—6T, T, S

For lamps with very small gradients in the leads, in which the application of (2:4-6) would
give small values for 7, —7;, d 7},/dT; is approximately unity, and it is usually sufficient to
assume that 7} = T ; such conditions would apply to most lamps embodied in pyrometers.
For lamps with large gradients we may use (2-5-1) and it would be necessary to determine
T, first by one of the methods outlined in §2-4-1; this would apply to the standard strip lamps
which, as will appear later, show large values for 7;,—7;. If the junctions of filament and
leads were controlled in temperature, as with water-cooling, d7,,/d7; and d7,,/0T; give the
relative effects of alterations in 7 or 7}; otherwise the overall temperature coefficient for
constant ¥ would be

dr,, 9T, , 9T, dT,

dT, ~ T, "ot at;’

(2:5-2)

If the two junction temperatures 7}, T}, were different then there would be three terms on
the right of (2-5-2) ; but we shall assume for simplicity of exposition that there is a common
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junction temperature 7;. In addition we ignore the Peltier effect, which is not significant in
the present context.

We have obtained precise expressions for the required derivatives on the basis of the
theory developed in §2-1. But these expressions, involving partial differentiation of an
elliptic function with respect to variables occurring both in amplitude and modulus, are
somewhat complex, and it is not proposed to reproduce them here, especially as numerical
treatment, with finite differences, gives adequate results in the narrow range of temperature
involved. The procedure may be outlined as follows. Our two basic solutions (2-1-3) and
(2:1-7) [%; = EF(¢;, &), r; = nF(0;, k,)] express the length x; and resistance 7; from the point
of maximum temperature to a junction, in terms of four main variables: thus§, #, «;, k5, ¢;, 0;
are functions of ¢, 7,,, 7;; and ¢;, 6, are also functions of 7;. We can therefore, by making
small alternations in each of the four variables separately, obtain the corresponding altera-
tions in x; and 7; and so find approximate values for dx;/dc, dx;/0T,,, dx;[0T;, dx;/0T;, and
for dr;/de, etc. Of course, not all of these derivatives may be required.

Constant current. In this case we simply have x; = £F(¢;, k) = L (constant), so that

0T, _  Ox; [0x; 0T,  dx; [0x;
o7, ~ arlaT, 9. arlary

and the temperature coefficient (d7,,/d7;), is obtained by substitution in (2-5-2).

Constant characteristic other than current. If we assume constant resistivity (p,) for the leads,
the resistance of a lead is r, = p, [/4,, where [ is the length of the lead and 4, its cross-sectional
area; thus with equal leads the total resistance of the lamp is 27, where r, = r;+7,. The
characteristic (y, say) which we assume constant may be the resistance r,, or some given
function of ¢ and 7, (such as the voltage v, = ¢7,), so that dy/dc, etc., may be expressed in terms
of dr;/dc, etc. From the simultaneous equations

x; = constant, y = constant,

in which the variables are ¢, T, T}, T}, we have

T, a(xj::l/)/a(xj:]/) aT,, . a(xjay)/a(xj: )

T, T T)lae T,y 0T e 1)l a6 T,)
d(x,y) . . Oxdy dx dy . .
where ale, T) is the Jacobian %aT 3T 9" The temperature coefficient (d7,/d7), is then

obtained as before by substitution in (2-5-2). It may be remarked that for most practical
purposes 7, may be ignored with negligible effect on the temperature coefficient.

2:5:2. Approximations
For high temperatures or for long filaments the method of obtaining derivatives by taking
small finite increments becomes uncertain, and also interpolation near the upper limit of the
elliptic integral tables (modulus 1, amplitude 90°) becomes increasingly difficult. For such
cases we have derived the following asymptotic formulae, valid for large values of y, where

— 2 (T0%)
X_2LTm(Ak) .
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Write 7 = T;/T,,, a =1In(§+./6) = 1-5992...; then for constant current, resistance and
voltage, respectively, we have approximately

(7). — ooee () = (77) (253)
(), - e (7)o oy
(), s (o), ~5lr)° )

These formulae improve in accuracy as y increases. If the error in d 7", /d 7 is not to exceed
0-05 (adequate for practical purposes), y must be roughly greater than 4, 3-5, 4-5 for the
current, resistance and voltage coefficients, respectively; for y respectively greater than
about 5, 5, 6, the error will be less than 0-01. If we let L — 00 (y - 00) we obtain the tem-
perature coefficients for an infinite filament at a temperature of 7,, namely
dT, T.\* (dT, d7, 2(T\* '
il [ it 4 ) = 2 =2 2.5¢
().~ (z) (7)o (&), ~5(7) (2:5:6)
formulae which are easily obtained otherwise, from (2-2-1).
The above approximations are valid at incandescent temperatures provided that y is large

enough, but it is of interest to note that for very low values of 7, the following degenerations
can be derived: if y, = 2L T2%(cpe,/Ak)? then when 7, — T, we have

d7,, d7,, d7,, 1 —y, cosech
(d_T) 1 (ET_) -1 (dT) ~ l—Xxscothxxs& BERECYE (2:5°7)

2:5-3. Comparison of temperature coefficients for different lamps

In this section we show that the temperature coefficients of a lamp are (for given tem-
peratures) functions of L(p/A)*, where, as usual, 4 and p denote the area of cross-section and
the perimeter of a cross-section of the filament, of total length 2L. We also suggest an alter-
native characteristic of a lamp against which the coefficients can be correlated.

First define the normalized variables

X' =x(p/A)}, C=c/(dp)}, R =r(4p)t.
With these variables, the general differential equation of heat flow (2-1-1) becomes
d dT
3 (ki) = Copr—oer T~ T3);
also, for the resistance, Adr = p,dx, or dR’ = p,dX’, so that

d dT
—Pryp (kTPTd_Rr) = Cpr—oe,(T*—TF).

If the boundary conditions on these equations are

X'=0, R'=0 when T=T,; X =X=L(p/A)}, R =R —r,(4p)}
when T = T;
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then the solutions of the equations (irrespective of any assumptions as to the variations of
ky, pr, € with temperature) must be of the form

X = f( ’ m> j>Ts) R:g( ’ m: j’ s)

the functions f and g being the same for any filament. A formal inversion and substitution
then gives
8 C= .fl( ) m’ pT) R:g1( ) m, ], s) (2‘5'8)

Now let y be any specified characteristic which depends on C and/or R (we ignore the
negligible resistance of the leads for this purpose, in accordance with the remark at the end
of §2-5-1) ; it then follows from (2-5-8) that y is expressible in the formy = 4(X, T,,, T}, T;). If

md) ~ 33 —s
now y is kept constant while 7, 7}, T, may vary (X is of course constant for this process) we
obtain expressions for the derivatives (97,,/07;)r, const. 20d (97,/07}) 7, const.» Which will

themselves depend on X, T, T}, 1;; substitution of these expressions, together with (2-5-1),

into (2-5-2), then shows that
(d7,/dT;), = h(X, T, T}, T;). (2-5-9)

stmyLjots

That is, if two filaments have the same value of X = L(p/4)%, then at corresponding tem-
peratures they have the same temperature coefficients.

Some simplifications ensue if, as in most pyrometer lamps, it is permissible to assume that
T; = T,. For since most of the functions used above are relatively insensitive to small
changes in T}, the variables 7} and T} can be regarded as constants, equal to normal room

temperature (say 15 °C); (2-5-8) and (2-5-9) then take the form

C=c/(4p)t =fo(X,T,), (2:5:10)
R = 7j(Ap)% = g,(X,T,,), (2:5:11)
(AT, /dT), = hy(X,T,). (2:512)

Equations (2:5-10) and (2-5:11) enable us to give standardized current and resistance
calibrations which can be applied to any pyrometer lamp with a given value of X; moreover,
a further corollary, obtained by multiplying these equations together, is

V=CR=cr;=v;=f,(X,T,); (2:5-13)

that is, two pyrometer lamps with the same value of X have the same voltage calibration.

Finally, we examine the possibility of replacing X in the above formulae by some easily
measured characteristic of the pyrometer lamp. For this purpose we suggest the ratio of the
currents required to match a black body held at two fixed temperatures 7, and 7, re-
spectively, for instance the melting points of gold and palladium, which are two fixed points
on the International Temperature Scale. Thus, with 7, given, let the corresponding values
of ¢ be ¢, and ¢,, where ey, = CylC, = 4.

Using (2:5:10), since we suppose 7} fixed and 7; = T, we then have

since T, Ty are fixed numbers, this means that there is a direct functional relation between X

and ¢, so that the formulae (2:5:10) to (2-5-13) each have an alternative form with ¢ in place
of X. For applications of these results to pyrometer lamps see §3-2-1.

59 Vor. 252. A.
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2:6. THOMSON EFFECT

The physical constants of tungsten which have so far been considered in relation to the
temperature distribution in a filament, have been based on a considerable amount of
experimental evidence. The Thomson effect, however, has been studied only by Worthing
(1915), who had to rely on the optical pyrometer for measuring the small differences in
temperature on which determination of the effect depended—such measurements can now
be made with much greater ease and precision by means of photocell apparatus. In this
section the effect, on distribution, of assumed variations of the Thomson coefficient with
temperature, is briefly considered with a view to assisting further experimental work.

The Thomson effect in an element of filament does not depend on its length (dx) but only
on the temperature difference (d7") between its ends. If ¢, is the Thomson coefficient at a
temperature 7, the energy absorbed or liberated (according to the direction of the current)
is ¢y dT. Thus the basic energy equation is

d d7\ %, - dr .
~-d~x(AkTH;) = T per (T~ Th) o - (2:6:1)
The last term of this equation is of small effect, when compared with the others, and can be
neglected for a first approximation. The value of d 7/dx obtained on integration can then be
‘fed back’ into the last term, precisely as explained in §2-3, and so give a second approxima-
tion, bringing in the Thomson coefficient. The process can be repeated if thought necessary.

Thus for the first approximation we have from §2-1-1
dT/dx = N(T6—3BT?+4 M)},
where B = T+ c%py|Aope,, N = (ope,/34k)*, M = 3BT TS,

T,, being the maximum temperature in the filament. Substituting this value of d 7/dx in the
last term of (2-6-1) and integrating between 7 and 7, we obtain

(dT/dx)2 = N*(T6—3BT2+ M)+ (2¢N/AK) G(T),

Tm ‘
where G(T) = f Yo (T6— 3BT+ M)HdT. (2-6:2)
T
Inverting and expanding as far as the second term, we have
dx 1 ) c -3

For any given temperature T there will be two values of x (%, and x,) corresponding to the
two current directions and, on integrating the last equation, the difference between them,
taking an origin at the cold end* of the filament at a temperature 7,, would be

7
Xy, = f’if G(T) (T6—3BT?+ M)-1dT. (2:6:3)
opey J 1,
In particular this would give, for 7" = T,,, the shift of the maximum on reversal of the current,
due to the Thomson effect.

* Here we ignore the Peltier effect, though this can be corrected for, or else eliminated by suitable choice
of lead material (see §3-1:7).
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To apply this result we should need to assume some form for the relation of Thomson
coeflicient to temperature, say a polynomial

Vr=a+pT+yT?2+..., (2-6-4)

and in general (2-6-3) would call for a double numerical integration, though G(7") would in
fact be expressible in terms of elliptic functions. In the case of a filament sufficiently long to
be regarded, without serious error, as infinite, considerable simplification ensues, in that
we can put 7, = T, and so

T6—3BT?+ M = (T2 — T2 (2T2+ T?).

G(T) is then expressible in terms of hyperbolic functions for any form (2-6-4) of ;. and the
evaluation of x, —x, requires a single numerical integration.

2-7. APPROACH TO THE STEADY STATE

The approach to the steady state of temperature distribution, of lamps used in pyrometry,
is of importance in that considerable error may result from readings taken before equi-
librium is reached. This applies particularly to standard strip lamps for which as much as
30 min may have to be allowed, from switching on, for safety in this respect.

The treatment of such a problem is quite impracticable without simplifying assumptions,
and we here assume the filament to be infinitely long and to be run either at constant
current or at constant voltage per unit length. With a finite filament these two conditions
would be fulfilled by a source of power, of constant e.m.f. and zero internal resistance, con-
nected respectively to a lamp with a very high series resistance, or directly to the lamp itself.
In practice, a pyrometer circuit usually consists of a high-capacity accumulator with a
resistance in series, and so would fall between the extremes of the two conditions, but would
normally be closer to that of constant current, since the series resistance would in general be
considerably greater than that of the lamp. In the case of a finite filament the temperature
at its ends has also to be taken into account. If this remains sensibly constant, as with
very heavy or water-cooled leads, the response, from switching on, might be expected to
follow closely that of an infinite filament of the same cross-section—an observation quoted in
§3-1-6 below tends to confirm this view. On this supposition, the data for an infinite filament
would provide upper and lower limits for the minimum response time for a finite filament
and serve to indicate the degree of avoidable creep resulting from any gradual temperature
change of the filament ends, however caused. We deal below with the response of an infinite
filament under the two conditions named. ”

2:7-1. Response of infinite filament: constant current
In this section we make the same assumptions as before, namely, p, = p, T, 6, = ¢, T, and
we further take as constant the heat capacity per unit volume (£). Then the following
equation expresses the fact that the heat generated by a constant current ¢,, in time d¢ less
thatlost by radiation equals the heat required to raise the temperature of the filament by d 7°:

[2 pp/A—ope,(TH—TH]dt = AhdT. (27-1)
59-2
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482 D. C. RUSSELL AND F. H. SCHOFIELD
Since ¢,, is the current required to maintain the filament at a temperature 7', we have,
from (2-2-1), 2 po — Aapey(Th— T4 ;
if we eliminate ¢,, from (2-7-1) and write
G = Ahjaope, T:, 7= T/T,,

equation (2-7-1) takes the form
4G dr/dt = 7(1—1%)

of which the solution is t = Gln (1% —1) +constant.

For the relation between ¢ and 7" when the current is switched on to the filament at the
temperature of the surroundings (7,) we then have

t=GIn{(r*—1)/(r-*— 1)} (2:7-2)

This relation has been used for calculating one of the response curves shown in figure 3,
p- 491. However, the main concern in practice is with the time taken for the filament to
reach, from cold, to within a small fixed value A (say 1 or 2 °C) of the final temperature 7.
For this we have derived from (2:7-2) the following formula (expressed in the original
symbols) which is convenient for calculation and gives a very close approximation:

by = (Ahj4apey T25) In (TZ/4TEA). (2:7-3)

This form has been used to obtain a curve on each of figures 4 and 5.

It is of interest to consider the bearing of two factors, namely, dimensions of filament and
value of T, on the times given by (2-7-2) and (2:7-3). We note that in the two formulae the
time is directly proportional to A/p (cross-section -+ perimeter). This would allow the time
of response for any filament to be deduced from the corresponding time for any other fila-
ment, run at the same temperature; and also an interesting comparison to be made between
cylindrical and flat filaments. Thus for a cylindrical filament of diameter 4, 4/p = }b, while
for a flat filament of width w and thickness u, 4/p = $u(1+u/w) = ju approximately, if
ufwissmall. Forcertain purposes the size of image presented by the filament is of importance
in optical pyrometry. If we sight normally on the wider side of the strip it will present an
identical aspect to that of a cylindrical filament if w = b, but the strip would obviously have
a much quicker response.

With regard to the effect of differing maximum temperatures, we observe that the
logarithmic term of T, changes but slowly when compared with the term 7’4, and hence the
times given by (2:7-3) may be taken to vary roughly as the inverse fourth power of 7.

2:7-2.  Response of infinite filament: constant voltage per unit length

If v, 1s the constant voltage per unit length corresponding with the final temperature 7,

the basic equation will be
[v2 A/pr—ape (T*—TH]dt = ArdT,
where v,, is given by

Ve = (Copo Ton|A)? = apeopo TE(Th — T7) /4.
Eliminating v,,, we have

ope [ T2(T4— T4 — T T*— T%]dt = ARTdT.
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If we change the variable to 7 = 77, and write

G = Ahjdope, Th, 71,=T,/T,,
the equation takes the form

4Grdr/dt = (1—12) (1412 H 1 —14).

On integration this yields the following, subject to the condition 7¢ < £ which always applies
In practice

¢t = f(71) +constant, (27-4)
G [, Tl 6 o 2l
where f(T)~3_7g{n Mot y1 | J(3_4rt) An J(3‘—T¢§)}’

then the time ¢ taken for the filament to heat up from temperature 7y(7, = 7;/7T,,) to
temperature 7" is

t=Jf(1) =f(10)- (2:7-5)
This relation has been used for calculating one of the curves in figure 3. However, our main
concern, as mentioned above, is with the time taken from cold (7}) for the filament to get
within a small amount Aof 7;,. For this we have derived the following approximate formula,
which permits of easy calculation

Ah 372, 7w T\ .
tua) = 120pe, T2 {ln ( 4A2) +\7§—6(Tw) } (2:7:6)

This form has been used to obtain curves shown in figures 4 and 5. Similar remarks to those
of the preceding section, as to the effect on response of filament dimensions and value of 7,
would apply here; but the rule of variation of t with 7°;* would not yield so close a result, and
the effect of variations of 7, would be somewhat greater.

3. VERIFICATIONS AND APPLICATIONS OF THE THEORY

The preceding section gives the full development of our theory built on three basic
assumptions and includes a number of formulae suitable for calculation. These expressions
are quite general and could be used to calculate the characteristics of many types of lamp,
but in this section they are applied only to the two main types used in pyrometry, in which we
are primarily interested, namely: (i) strip filament lamps used as standards for reproducing
the International Temperature Scale (Comm. Int. des Poids et Mésures 1948); (ii) lamps
with finer filaments, either strip or wire, embodied in optical pyrometers. Most of the calcu-
lations relate to a lamp of type (i) above since, as indicated in § 2-4-1, this serves the better to
illustrate the special problems of leads, etc. The scheme of the calculations has been planned
with the following objectives in view: to establish the validity of our basic assumptions; to
allow comparison with an earlier theory (that of Ribaud & Nikitine—see appendix); to
supply data and suggestions of value to designers and users of pyrometric lamps.

The first objective, which is obviously the most important, calls for special comment. Of
possible methods of verification, the most convincing is that of comparison of calculation with
the findings of experiment. We have applied this test wherever possible and, as will be seen,
it has tended to justify our three assumptions. But the experimental evidence is somewhat
limited and consequently we have sought elsewhere for justification, particularly of our
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two more important simplifications, namely, those for resistivity and emissivity. The recent
developments in computer technique, giving direct numerical solutions of differential
equations free from any simplifications, seemed ideal for the purpose. Accordingly, a series
of calculations, designed to throw light on various aspects of the problem, were undertaken
at our request by the National Physical Laboratory. As will be seen, a comparison of these
with our own calculations has served to validate the two assumptions. It has also been of
value in indicating the closeness with which our simpler formulae (for infinitely long fila-
ments) might be expected to apply to the relatively long filaments often used in pyrometry.

With the numerical method playing so important a role, the question may be asked
whether it could not entirely replace our algebraic treatment. On this point it may be
remarked that the latter has dealt with some nine independent variables (in addition to the
physical constants of tungsten) and that general expressions, in terms of some of these, have
been derived for such entities as the temperature distribution in filament and leads; the
total resistance of the filament; its temperature coefficients of calibration; its speed of
response. These expressions, with the relatively unimportant exception of (2-6-3), all permit
of ready computation and, since they apply to any type of tungsten vacuum-lamp, cover
large ranges of the variables—in pyrometric lamps alone, ranges in excess of 10 to 1 occur in
filament dimensions and current. With the numerical method it would obviously be
impracticable to provide tabular material to cover all possible, or even likely, permutations
of the several variables. But though the numerical method cannot be a substitute for the full
algebraical treatment, it can no doubt be of great value in problems of limited scope such as,
for example, that indicated in the last paragraph of §3-1-5 below.

For the purpose of our calculations the main properties of tungsten are taken to be as
follows:

Thermal conductivity. A constant value of 1-14 W cm/°C. This is Langmuir’s value from
table 1; owing to the spread of results there shown, the effect of departure from the chosen
value is very briefly considered.

Emisswity or absorptivity (¢) and resistivity (p). The values from table 67 of Ribaud (1931)
based on the work of Forsythe & Worthing (1925) and of Zwikker (1925).

The black-body constant of total radiation is taken as

0c=>574x10"12Wcm~2°C-4,

Other data, such as dimensions of filament and leads, and thermoelectric coefficients, are
given in the appropriate sections. As explained in §1-2-2; the true temperature (77) at a
point on the filament is expressed in absolute measure (degrees Kelvin) ; where apparent or
brightness temperatures are given, these, following usual practice, are stated consistently in
degrees centigrade.

3:1. STANDARD STRIP LAMPS

Tungsten filaments in the form of flat strip are now universally preferred to those of
circular section, for pyrometric standards. The reasons for this preference have been well set
out by Ribaud (1931) who has given general data, very useful for designers of such lamps, in
his tables 47 and 48. Our object is to examine in greater detail the characteristics of a single
type of lamp, namely, that illustrated in figure 1. This type is based on a design by the NELA
Research Laboratory, U.S.A. (Forsythe 1923), and is commonly used in this country; we
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believe that it does not differ greatly from that adopted elsewhere. The dimensions of the
filament are given in the heading of table 2.

For this lamp we treat the problem of temperature distribution and allied matters in
increasing stages of complexity. Thus we first take the temperature (7}) of the filament ends
to be fixed and equal (which state can be attained—see §3-1:7) and ignore the factors of
unequal leads and of Peltier and Thomson effects, which are subsequently considered in
successive stages. Temperature coefficients of calibration and the approach to the steady
state are also dealt with and, finally, possible alterations in design are considered.

TABLE 2. CALCULATIONS OF CURRENT AND RESISTANCE OF STRIP LAMP FILAMENT

Dimensions of filament: length 6-2 cm, section 0-131 x 0-0064 cm.
Conditions: T; = 400 °K, T, = 288 °K.
Calculations:
N.P.L., by National Physical Laboratory without assumptions for p and e.
R. & S., based on present paper (first approximation, §2-1).
R. & S. (2), based on present paper (second approximation, §2-3).
R. & N., based on theory of Ribaud & Nikitine (see appendix).

o0, current for infinite filament of cross-section as above.

maximum true temperature °K
(apparent temperature °C)
A

500 800 1100 1400 1569
characteristic method —_ —_ (779 °C) (1050 °C) (1200 °C)
current 00 0-60 1-55 292 4-80 6-06
¢ (A) N.P.L. 1-39 2:40 3:36 4-91 —

R. & S. 1-38 2:37 3:33 4-90 6-09
R. & S. (2) — — 3:34 4-91 —_
R. & N. 1-02 195 314 4-85 6-:06
resistance N.P.L. 0-073 0-115 0-165 0-229 —
2r; (Q) R. & S. 0-:074 0-120 0171 0-233 0:279
R. &N 0-072 0-119 0-176 0-243 0-285

3:1-1. Characteristics of strip lamp: fixed junction temperatures

The temperature distribution along the filament is taken to be symmetric about its centre
and the temperatures (7}) at its ends to be equal and constant. We then calculate, for any
particular value of the maximum temperature (7},), the current required, the resistance of
the filament, and its temperature distribution, on the basis of the assumptions p, = p, T,
¢p = €y T, kyconstant. For this purpose p, and ¢, are not taken as absolute constants, but to
be of such values as to make the resistivity and emissivity agree with the accepted figures for
the particular 7,. This is done in recognition of the overriding importance of the conditions
near the centre of the filament.

The first step in calculation is to determine the current required to fit the boundary
conditions, as explained in §2-1-1. The remainder of the calculations do not call for special
comment. In addition, corresponding figures are given based on the theory of Ribaud &
Nikitine (1927), slightly modified as explained in the appendix to this paper. Both sets of
calculations have involved simplifying assumptions and as a check on these, computations
were made by the Mathematics Division of the National Physical Laboratory from the
original equation (2-1-1), taking our constant value for £, but published data (Ribaud 1931,
table 67) for the variations of resistivity and emissivity with temperature.

The results of the several calculations of current and resistance are given in table 2 for five
values of 7. Only the last three values (expressed as true temperatures °K) are above the

m*
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visible limit and for these the figures given in brackets (°C) are the corresponding apparent
temperatures obtained by applying corrections for emissivity and an 8 9, absorption for the
single thickness of glass through which the filament is viewed.

With regard to current, it will be seen that the N.P.L. and R. & S. values are in satisfactory
agreement and show the approach, with rising temperatures, to the values for an infinite
filament given in the first line of the table. The R. & N. values show considerable departures
from the others, especially at the lower temperatures. With regard to resistance, neither the
R. & S.nor R. & N. figures differ greatly from those of N.P.L.

It is also of interest to compare calculated values with those obtained by experiment. In
practice the value of 7; is not fixed as in table 2, but rises with 7,, and moreover is different
for the two ends of a filament with unequal leads. Referring to a later table 5 we see that
the mean value of 7}, for 7,, = 1400 °K, is of the order of 420 °K, while that for 7,, = 1100 °K
can similarly be shown to be about 360 °K. In table 3 the experimental values of current
and resistance for a filament of the dimensions previously given are compared with N.P.L.
calculated values applicable to 7} temperatures of 350 and 450 °K.

TABLE 3. COMPARISON OF EXPERIMENTAL AND CALCULATED VALUES

Dimensions of filament as in table 2.

expt. are experimental values.
N.P.L. calculations with T, = 288 °K.

current ¢ (A) resistance 27; (Q)
S > A [ A )
cale. for T; calc. for T;
Al Al

Tm - N r N
(°K) 350 °K 450 °K expt. 350 °K 450 °K expt.*
1100 3-40 3:32 3:37 0-161 0-169 0-167
1400 4-92 4-90 4-90 0-225 0-232 0-230

* For a strict comparison, the total resistance of the leads (about 0-002 Q) should be subtracted from the
figures in this column.

The fact that the experimental values fall between the extremes of those calculated may be
taken as endorsing the method of treatment and the numerical values assumed for the
constants. For instance, it can easily be shown that the effect of a 10 9, difference in the
initial choice of the thermal conductivity £ would be to change ¢ (in the same direction) by
an amount varying from 2-0 9, at 1100 °K to 0-54 9%, at 1400 °K, and to change r (in the
opposite direction) by 0-4 9%, at 1100 °K, up to 0-7 9, at 1400 °K.

The distribution of temperature along the filament, as given by the several methods of
calculation, is also considered. For this purpose fixed temperatures have been taken for
T, (1400°K) and 7} (400 °K), 7} being 288 °K, and the N.P.L. calculations, shown in the
first line of table 4, have been treated as standard. The R. & S. (ell.) figures are based on the
elliptic formula (2-1-5) in this paper, and the R. & S. (hyp.) figures on the hyperbolic
formula (2-2-2), for the latter a value of 7, being chosen so as to give the temperature of
1400 °K at the distance of 3-1 cm from the cold end (i.e. at the centre of the filament). In
addition to this full comparison we also give the figures for R. & S. (ell.) and R. & S. (hyp.)
at a lower value (1013 °K) for 7},. It may be added that the 7, for 1400 °K was 1407-7 °K,
and for 1013 °K it was 1067-2 °K.
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It will be seen that the R. & N. values at 1400 °K (1050 °C apparent) depart considerably
from the standard N.P.L. values, while the two sets of R. & S. values are much closer to
standard with little to choose between them. The divergencies between the two R. & S.
values naturally become larger towards the bottom of the scale—see figures for 1013 °K
(700 °C apparent)—but are not such as to invalidate the use of the simpler hyperbolic
formula to get a fair idea of distribution throughout the range of the lamp.

TABLE 4. CALCULATIONS OF TEMPERATURE DISTRIBUTION ALONG STRIP FILAMENT

Dimensions of filament as in table 2.

Conditions: T; = 400 °K, T, = 288°K.

Calculations:
N.P.L., by National Physical Laboratory without assumptions for p and e.
R. & S. (ell.), based on present paper with elliptic formulae.
R. & S. (hyp.), based on present paper with hyperbolic formulae.

R. & N., based on theory of Ribaud & Nikitine.

temperatures (°K) at distance (cm) from cold end

method 31 26 2:1 16 1-1 0-6 0-1 0
N.P.L. 1400 1393 1368 1304 1163 897 495 400
R.&S. (ell.) 1400 1393 1372 1307 1170 907 497 400
R. & S. (hyp.) 1400 1389 1362 1299 1162 905 495 400
R. & N. 1400 1397 1384 1352 1271 1069 568 400
R. & S. (ell.) 1013 1001 963 893 785 634 443 400
R. & S. (hyp.) 1013 980 930 856 751 611 442 400

TABLE 5. JUNCTION TEMPERATURES AND DISPLACEMENT (d) OF MAXIMUM

Dimensions of filament as before, of nickel leads 0-29 cm diameter, 3-5 and 8-5 cm long.
Calculations for T, = 288 °K:

N.P.L., by National Physical Laboratory without assumptions for p and e.

R. & S. (hyp.), based on present paper with hyperbolic formulae.

maximum temperature

p A N junction temperatures (°K)
true apparent - - N
method (°K) (°C) 3-5cm 8:5 cm difference d (mm)
N.P.L. 1400 1050 367 471 104 0-564
R. & S. (hyp.) 1400 1050 368 476 108 0-569
R. & S. (hyp.) 1013 700 316 356 40 0-580
1569 1200 403 554 151 0-561
- 2150 1700 581 935 354 0-528

3-1-2. Junction temperatures: unequal leads

The leads of the strip lamp (see simplified representation in figure 2) are assumed to be of
pure nickel, 0-29 cm in diameter and respectively 3-5 and 8-5 cm long. For given values of
T, and T, calculations (designated by R. & S. (hyp.)) are made of the two junction tem-
peratures (from (2-4-6)) and the displacement () from centre of the maximum temperature
(from (2-4-7)). In these formulae we take 7, = 7,,, and any disturbance due to Peltier or
Thomson effects is at present ignored. The main example is for a 7, of 1400 °K, where
comparison is made with the standard N.P.L. values. The other temperatures cover the
normal range of the lamp (700 to 1700 °C apparent).

It will be seen that at 1400 °K there is satisfactory agreement between our figures and the
standard N.P.L. ones. This has encouraged us to apply the hyperbolic formula over the
whole range of the lamp. For the highest temperature (2150 °K), with the approximate

60 Vor. 252. A.
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formula pushed to an extreme limit and the uncertainty (already mentioned) as to the
effective lengths of the leads, the figures must be taken as giving only rough estimates;
nevertheless, they are consistent with the experimental observation that the filament ceases
to give any visible radiation at about 1 mm and within + mm from the respective ends of the
filament, the corresponding figures calculated from the junction temperatures, and taking
the lowest visible temperature as 650 °C apparent (959 °K true), being 1-1 and 0-1 mm.

3:1-3. Peltier effect

In this section we carry the analysis a stage beyond §3-1-2 by considering the modifica-
tions due to the Peltier effect. As pointed out in §2-4-2, the Peltier coefficient (II) can be
derived from the thermoelectric relations of the two metals; thus, taking the published data*
for the thermoelectric force (E) between tungsten and nickel, we have derived table 6 of

TABLE 6. PELTIER COEFFICIENT BETWEEN TUNGSTEN AND NICKEL

T (°K) 300 400 500 600 700 800 900 1000 1100 1200
IT (mV) 6-9 12-4 16-6 189 22-9 29-6 385 483 584 69-2

TABLE 7. EFFECT OF CURRENT REVERSAL ON JUNCTION TEMPERATURES AND
DISPLACEMENT OF MAXIMUM

Dimensions of filament and leads as in tables 2 and 5.
Calculations for T, = 288 °K:

N.P.L., by National Physical Laboratory without assumptions for p and e.
R. & S. (hyp.), based on present paper with hyperbolic formulae.

current T T. T. d

direction method (°K”S (°ij ("KJ)2 T, —T, (mm)
J1=>Js N.P.L. 1400 363 486 123 0-669
R. & S. (hyp.) 1400 364 491 127 0-674
Jo = Ji N.P.L. 1400 371 457 86 0-463
R. & S. (hyp.) 1400 373 461 88 0-468
J1>J2 R. & S. (hyp.) 1013 314 361 47 0-68
1569 397 576 179 0-67
2150 564 1031 467 0-71
Jo =1 R. & S. (hyp.) 1013 318 351 33 0-48
1569 410 534 124 0-46
2150 598 867 269 0-40

values of Il = T'dE/d T These figures are liable to be affected considerably by the purity of
the metals, but the precise values are not of too much importance here, since our main
concern is a comparison of the results yielded by our formulae with the standard N.P.L.
figures obtained, as before, without our assumptions as to p and e. The equations used are
(2-4-10) and (2-4:7), with 7, = T, the solution of (2:4-10) being obtained by trial by
means of table 6; for the results at 1400 °K a law of the form II = a7+ b 7?2+ ¢T3 was taken,
matched over the range 300 to 600° K. Specimen results are given in table 7. The degree of
agreement between the two sets of values for 7, = 1400 °K indicates that our approximate
treatment is satisfactory.

Itis of interest to use the table to isolate the effects of the two factors—unequal leads and
Peltier effect. Thus the effect of current reversal on the N.P.L. figures for 1400 °K may be

written T,—T; = 104:5£18-5°K, d = 0-566+0-103 mm;

* Temperature, Symposium of Amer. Inst. of Physics (1941).
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since the N.P.L. calculation without Peltier effect (see table 5) makes 7, —T7; = 104 °K and
d = 0-564 mm, we may conclude that the Peltier disturbance at the junctions in this case is
of the order of 4-19 °C and near the centre the negligible amount of 4+ 0-1 mm. The other
figures do not call for special comment except that the displacements of 7, from centre all
fall within narrow limits, the extreme variation being only --0-16 mm.

3-1-4. Temperature coefficients

In table 8 we give some results of applying the theory of §2:5 to obtain temperature
coeflicients for the standard strip lamp. The approximations of §2-5-2 can be applied
for T,, > 1050°C apparent, and, indeed, may be considered adequate in practice for
T,, > 800 °C apparent. All the calculations are for equal leads of length /, but the effect of
different choices of /is indicated for the extreme temperatures; in both cases it will be seen
that the variation in / of 4-2-5 cm causes variations in the temperature coefficients of at most
0-02, and usually considerably less; moreover, the values of the temperature coeflicients for
[ = 6:0 cm is the mean of the values for / = 3-5cm and / = 8-5 cm. We infer that if we have
unequal leads in this type of lamp, then calculations made for equal leads of mean length
will yield temperature coeflicients indistinguishable from those obtained by more complex
calculations with unequal leads; a specimen calculation (not shown) confirms this.

TABLE 8. TEMPERATURE COEFFICIENTS OF STANDARD STRIP LAMP

Dimensions of filament as in table 2; equal nickel leads 0-29 cm diameter, length /.

Calculations for T, = 288 °K.:
(a) based on elliptic formulae (2-1-3), (2-1-7), as described in §2-5-1;
(b) from approximations in §2-5-2, where y = 2LT2(ape,/Ak)%.

(dT,/dT,), gives rise in T, for 1 °Crrise in T}, with filament run at constant current; similarly (d7°,,/d T}),
for constant resistance and (d 7', /dT}), for constant voltage across the filament.

T, in °C apparent, with true temperatures °K in ().

(dT,/dT), dT,/dT), dT,/dT,),
l 7—;’ c e A N u——_\ fﬁ——j;ﬁ

T, (em) (°K (A) X (a) (0) (a) (b) (a) (b)
700 (1013) 60 336 3076  —  +033 —  —046 —  —003, —
35 316 3055 —  +03¢& —  —047 —  —003, —

85 356  3:097 — 40382 —  —045 —  —003, —

800 (1122) 6-0 354 3-459 3428 4019 4023 —042 —-047 -007, —0-18
1050 (1400) 6-0 423 4-900 5518  +0:03; +0-03; —0-29 —0-29 —-0-09, -—0:10,

1200 (1569) 60 481 — 7044  — 4001, — —022 —  —007,
1700 (2150) 60 768 — 1316 — 4000, — —011 —  —003,
35 581 — 1316 — 4000, — —013 —  —004,
85 935 — 1316 — 4000, — =009 —  —0-02

The values of (d7,,/dT;), between 7', = 700 °C and 1050 °C apparent may be compared
with the observational values given in Fig. 4 (a) of Barber (19464); the dimensions of his
lamp are only slightly different from ours and his observed temperature coeflicients of
current range from 0-36 at 700 °C to about 0-01 at 1050 °C, so that they follow closely the
corresponding values in table 8.

We also remark that an examination of the components of the temperature coefficients
has shown that at incandescent temperatures the ‘radiation temperature coefficient’
0T, /0T is uniformly small, the maximum value being 0-02, for (97,,/97), at 700 °C. Thus
whenever a temperature coefficient is large enough for practical considerations, most of its

60-2
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effect comes from changes in junction temperatures, indicating that if these temperatures
can be accurately controlled the effect on lamp calibrations of reasonable changes in air
temperature will be negligible.

3:1-5. Thomson effect

In §2-6 consideration was given to the effect, on temperature distribution, of assumed
variations of the Thomson coefficient (¢,) with temperature. In this section we take two
such relations, arbitrarily chosen, and apply them to calculate the values of the Thomson
coefficient corresponding with several displacements from centre of the maximum tem-
perature 7, in the filament, assuming equal leads; these displacements are of the order
indicated by the experiments of Barber (1946 @). The calculations are made for fixed values
of T, T; and T, and in the assumed absence of the Peltier effect. The results are obtained
from equation (2:6-3) by double numerical integration, and are compared in table 9 with
standard N.P.L. calculations free from our usual simplifications for resistivity and emissivity.

TABLE 9. CALCULATION OF THOMSON COEFFICIENT FROM DISPLACEMENT OF 7',

Dimensions of filament as in table 2.

Conditions T, = 1400 °K, T; = 400°K, T, = 288 °K.

Assumed relation of 1 with T
(@ V=10 ) Yr=9Y,T|T, (Yo ¥, constants).

Calculations:
N.P.L., by National Physical Laboratory without assumptions for p and e.
R. & S., based on present paper (§2-6).

109, (V/°C) 10°9,, (V/°C)
displacement relation (a) relation (b)
of Tm Ie A 2} r A =
(mm) N.P.L. R. & S. N.P.L. R. &S.
—-0-3 —0-62 —0-64 —-0-74 —0-77
—04 —0-84 —0-85 —-0-98 —1-02
—-05 —1-05 —1-07 —1-23 —1-28

The agreement between the two sets of values is satisfactory, but they apply only to a
known shift of 7}, and the two assumptions for ¢,. Actually, as pointed out in §2-6, very
little is known of the Thomson effect in tungsten. There would therefore seem to be a
demand for fresh experiment which might conceivably be on the following lines; with a
strip lamp of the type of figure 1, but with leads having no Peltier effect against tungsten,
and the junction temperatures (7}) kept equal and constant, the shift in temperature on
reversal of the current would be determined by photocell at a number of points along the
filament, the process being repeated for several steady values of the maximum temperature
(T,,). The problem would then be to find the formula for the Thomson coefficient best fitted
to the mass of observations. With ordinary arithmetic processes based on our theory, this
task would be somewhat laborious, but it could no doubt be handled easily with a modern
computer, the only variables being the formula under trial and the value of 7',,.

3:1-6. Speed of response of strip lamp
In this section the results of §2-7 are applied to the case of a filament of infinite length and
of the cross-section taken above, namely 0-131 X 0-0064 cm. Figure 3 shows the forms of
curve (¢ and v) for heating up the filament from cold (15 °C) to an apparent temperature
of 1200 °C (1569 °K true), when run at constant current and constant voltage per unit
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length, respectively, calculated from (2:7-2) and (2:7-5), respectively. An observation, o, is
also shown on figure 3 for an actual lamp of the dimensions given in tables 2 and 5. This lamp
was run so as to reach the same final temperature (1200 °C), being connected to a 6 V
battery through a fixed resistance of about 1 Q. The final resistance of the lamp was 0-28 Q

I T I l I

1569°K 1-0
o

00,

¢ (seconds)

Ficure 3. Heating-up curves for an infinite filament.

35 T T T T T

0 | | | | ! |
700 800 900 1000 1100 1200 1300 1460
apparent temperature (°C)

Ficure 4. Time for an infinite filament to reach within 1 °C of maximum temperature.

so that its condition during heating-up fell between that of constant current and of constant
voltage, but closer to the former owing to the substantial ballast resistance. A snap reading
was taken as the filament reached visibility and this is shown in figure 3, the size of circle
indicating the possible degree of error. It will be seen that this observation lies close to the
¢ curve, and in the absence of disturbing conditions at the filament ends, the heating-

up curve of the lamp might be expected to continue close to the ¢ curve. If so, the time
60-3
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taken for the centre of the filament to approach within 1 °C of its final temperature would
be given approximately by the ¢ curve of figure 4. The ¢ and v curves of the figure were
calculated from (2-7-3) and (2-7-6), respectively. It will be seen that the times given by the
¢ curve range from 30s at 700° C to 3-4s at 1400 °C.

However, the final approach to the steady state of the actual lamp is much more pro-
tracted. Thus at 1200 °C, instead of a time of the order of 55, our observations suggest one
of some 10 min, and we note that the Code for disappearing-filament pyrometers issued by
the British Standards Institution (1954) recommends a time of 30 min for steadying-up at
700 °C. The cause of this heavy creep and the possibility of eliminating it are discussed in the
next section. : N

- 3:1+7. Possible alterations in design

The foregoing analysis of the characteristics of the standard strip lamp has revealed two
sources of weakness, namely, the excessive creep and the heavy temperature coeflicient of
current calibration in the lower part of the scale.

The creep is almost certainly due to some factor or factors operative at the ends of the
filament. One such factor might be the Peltier effect between tungsten and nickel, since its
considerable variation with temperature would tend to slow down the attainment of equi-
librium. If desired, this tendency could be eliminated by using for leads, instead of nickel,
a material having a negligible thermal e.m.f. against tungsten;* such a material exists,}
namely, the alloy 80 9, Ni, 20 %, Cr. But a more likely cause of creep is the conduction of
heat from the filament to the mass of material of low diffusivity in the base of the lamp. Its
effect might perhaps be minimized by interposing, between the sealing-in wires and the
filament, a mass of metal considerably greater than the present leads, such metal being of
high diffusivity and of shape and surface designed to give a high radiating power. The
temperature change of the filament ends should then be small and quickly reached. Alter-
natively, the temperature of the ends could be strictly controlled by the use of water-cooled
leads. Whether any such device would be worth considering would depend largely on the
use for which the lamp is intended. Thus if habitually used for calibrating batches of pyro-
meters at a series of steady temperatures, the total time wasted by creep might represent an
unimportant fraction in the life of the lamp ; but the reverse might well be the case for a lamp
used for short spells of observation or kept as an ultimate standard.

With regard to the heavy temperature coefficient of current calibration, some 30 %, at
700 °C, this would be avoided by means of water-cooled leads. Otherwise the obvious
remedy would be to use in this region the more favourable voltage calibration, with a
temperature coefficient of only 3 9, at 700 °C. To carry out this plan satisfactorily it would
be advisable to provide separate potential leads to the filament ends. The voltage calibration
could of course be used at higher temperatures and simultaneous readings of current and
voltage would provide a valuable check on the constancy of the filament. Such a check
could be made with ease and precision, but could not altogether replace the fundamental
check against a standard black body, through an intermediary optical pyrometer, for this
would cover changes from all causes, such as, for example, that due to blackening of the bulb.

* Such an elimination of the Peltier effect would be advantageous in any experiment concerning the

Thomson effect in tungsten (see §3-1-5).
T See Temperature, Symposium of Amer. Inst. of Physics (1941), p. 1310.
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It may be added that the system of water-cooled leads could readily be adapted to provide
both current and potential leads. Thus if an electrode consisted of a continuous tube with a
double seal through the glass, each half could serve one purpose, and similarly if an electrode
consisted of two co-axial tubes (for inflow and outflow) which were insulated from each
other except for a connexion at the filament end.

Finally, it is suggested that, if any substantial alteration in design is contemplated, con-
sideration might well be given to the form of glass envelope to avoid the errors due to
reflexion to which Barber (19464) has drawn attention.

3:2. PYROMETER LAMPS

This section covers applications of our theory to pyrometer lamps in relation to their
general characteristics in the steady state of temperature distribution (§3-2-1) and their
approach to that state (§3-2-2).

3:2:1. Characteristics in the steady state

The majority of the formulae used for the standard strip lamp apply here and have been
employed where appropriate. But there is an important difference between the two types.
For the former, 7; is generally much higher than 7] (see table 5), whereas for pyrometer
lamps the difference 7; — T, is often small enough to be negligible. If, as a typical example,
we take a long flat filament, 0-04 X 0-005 mm in section, connected to nickel leads 0-5 mm
diameter and 10 mm long, the formula (2-4-6) would make the difference 2 and 7 °C for true
T,, temperatures of 1000 and 1400 °K, respectively. For a cylindrical filament of diameter
0-04 mm, presenting the same aspect as the other, the diameter of the leads would have to
be increased to 0-86 mm to give the same result.

As explained in §2-5-3 the application of normalized variables is much simplified by the
assumption 7; = 7 = constant. It was shown that, for the same 7, all lamps with the same
dimensional relation X = L(p/4)* have identical voltage and temperature coefficients, as
well as the same current relations C = ¢/(4p)* and resistance relations R = j(Ap)%. Table 10
gives calculations of the quantities mentioned, covering the normal range of temperature,
and very roughly the limits of filament dimensions likely to be met in practice. With regard
to the latter, the largest diameter ordinarily used is 0-:065 mm which, in the past, has been
combined with a length as short as 20 mm, giving a value of 24-8 cm? for X. Barber (private
communication) found for such a filament a value of 1-39 for ¢ (ratio of current Pd/Au)
coupled with a current temperature coeflicient at 700 °C (apparent) greater than 3. This
last figure represents the possibility of an intolerably large error with change of air tem-
perature and such lamps would not now be used. Accordingly we have chosen, somewhat
arbitrarily, for the starting point of our table such a value for X as would reduce the coef-
ficient at 700 °C to the (still considerable) value of 1-0. Lamps of this specification, with
suitable leads, would give values of 7; — 7, comparable with those in the preceding paragraph,
which are close enough to the basic assumption.

In table 10, 7;, is given as the true temperature (°K). To obtain the corresponding
apparent temperature (°C) corrections would have to be applied for emissivity and for the
absorption of the objective lens plus a single thickness of lamp bulb. The minimum absorp-
tion would be some 159, (for four glass surfaces) and the maximum perhaps 209,


http://rsta.royalsocietypublishing.org/

) |
o \
C

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y B \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

494 D. C. RUSSELL AND F. H. SCHOFIELD ON

depending on the type of objective. In practice the sole concern is with the properties of a
lamp in relation to its apparent temperature when mounted in a particular pyrometer. The
apparent temperatures given in the heading of table 10 are for a total absorption of 15 9%, of
which the objective lens accounts for 8 %,. If the apparent temperatures are taken as
standard, then for greater lens absorption small adjustments may be needed in the absolute
values of the table (columns 3 to 6) ; the relative values (columns 2 and 7 to 9) would hardly
be affected. Further, it may be pointed out that, though the figures in the table relate to a
fixed T, (15 °C), the normal range of air temperatures would have no appreciable affect even
on the absolute values.

TABLE 10. CURRENT, RESISTANCE AND VOLTAGE CALIBRATIONS, AND TEMPERATURE COEF-
FICIENTS, OF PYROMETER LAMPS, CORRELATED WITH THE QUANTITY X = L(p/A)* AnD
WITH ¢ THE Pd/Au RATIO OF CURRENT

C = ¢/(Ap)t, R = r;(Ap)%, V = v;;5 L, R, V, refer to half the filament.

Assumed T; = T, = 288 °K.

T, in true temperature (°K); corresponding apparent temperatures (°C) for minimum absorption (15 %,
see above) are:

1000 °K (700 °C), 1390 °K (1063 °C = Au), 1931 °K (1552 °C = Pd).
(dT,/dT,) for constant

X q T, (o 105(R/X) |24 f \
(cm?) cpgfean (°K) (A cm™%) (Q cm) (V) amp ohm volt
33-67 1-625 1000 285-8 1-948 0-1875 +0-98 —0-54 +0-08
1390 371-5 2-881 0-3604 +0-25 —0-46 —0-09
1931 603-7 4-598 0-9345 +0-01,4 —0-28 —0-11
40-25 1-729 1000 250-3 1-958 0-1972 +0-73 —0-53 +0-03
1390 346-1 2-934 0-4088 +0-15 —0-42 —-0-11
1931 5984 4-750 1-1440 +0:00,4 —0-25 —0-09
44.27 1777 1000 234-5 1-964 0-2039 +0-62 —0-52 +0-01
1390 336-1 2-970 0-4419 +0-11 —0-39 —0-11
1931 597-3 4-820 1-2746 +0-004 —0-23 —0-09
oo* 1914 1000 159-0 2-570 — +0-02, 0 +0-01,
1390 311-5 3-819 - +0-00, 0 +0-00,4
1931 596-3 5-666 — +0-00,4 0 +0-00,

* (Cf. table I of Langmuir (1916¢ or b), applicable to very long filaments; Langmuir’s 24'/m and #wR’[4
can be compared with our C and R/X in the case X = co. In this case R/X = p, the resistivity at the
temperature in question.

Very little experimental evidence can be adduced in direct support of table 10 especially
in the important matter of temperature coeflicients. However, Barber (private com-
munication) found that a lamp with a value of 1-62; for ¢ had the following temperature
coefficients of current calibration for the apparent temperatures given in brackets:

1-0 (700°C), 0-2(1063°C), 0-0(1552°C).

It will be seen that these agree with the figures in the table, certainly to the nearest 0-1,
beyond which the figures have no practical significance. A comparison between calculated
and observed values is also possible for the total voltage across the filament. For the three
temperatures named, the calculated voltages from table 10 are shown in brackets after
Barber’s observed values, namely, 0-384 (0-375), 0-736 (0-721), 1-920 (1-869). It will be
seen that the differences between pairs of values all come within 3 9%,. The further com-
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parison with columns 4 and 5 of the table was rendered impossible by some uncertainty in
the filament dimensions. In the case of another filament, of dimensions 0-04 x 0:005 x 25 mm
(so that X = 83-9), Barber found a negligible current coefficient at 800 °C (apparent)
coupled with a value of 1-90 for ¢, which figures are consistent with the table.

In view of these facts and the general endorsement of our theory in other directions, it
would seem that the table can be used with some confidence to obtain approximate values
of the main characteristics of pyrometer lamps at the three temperatures named and by
interpolation between these temperatures. Thus, for any particular dimensions of filament,
a lamp designer could get the value of X and hence, from columns 4 to 6, the current,
resistance and voltage over the desired range of temperature. These data fix the voltage and
capacity of the battery required for the circuit and the sensitivity demanded of the measuring
appliance. Then from columns 7 to 9 can be obtained an estimate of the reproducibility, with
varying air temperature, of the scale of calibration. The choice of the calibration charac-
teristic depends somewhat on the range to be covered, but it will be seen from the table that,
for a tolerable limit of 0-1, the one for voltage is satisfactory throughout. The current
relation shows a tendency to large errors at low temperatures but quickly improves with
rising temperature. The resistance relation is liable to rather high errors throughout, and
shows little improvement for rising values of X. This last fact suggests that relatively long
filaments would have to be used to reduce the coefficient to reasonable figures—in fact, we
calculate that the value of X = L(p/A4)?* required at 700 °C (apparent) in order to reduce the
resistance coefficient (d7,/dT}), to —0-1 is about 390 cm?; and a filament of cross-section
0-04 x 0-005 mm would have to be 116 mm long in order to achieve this. It may, however, be
possible with a bridge circuit to reduce or eliminate the coefficient by having in an arm,
opposed to the lamp filament, a resistance of appropriate coefficient and dimensions. Such
resistance would best be in the form of a short loop of tungsten similar to the filament and be
included in the bulb so as to be exposed to the same temperature changes and show similar
lag. For adjustment, there would be available the relative dimensions of loop and filament
and the proportions of current carried by the two.

In addition to the use of the table in predicting the behaviour of hypothetical lamps, it can
be employed with advantage for lamps already in existence without the necessity of deter-
mining the filament dimensions. Thus for any 7, the current, resistance and voltage can
readily be measured by the ordinary method of calibration against a standard, and with ¢ so
determined the temperature coeflicients could be estimated from the table. In this way the
troublesome process of actually measuring any of the coeflicients could be obviated.

Finally, it may be pointed out that the table serves to illustrate some of the advantages of
a filament with flat, as against one with circular, cross-section. Taking, for example, flat
(0-04 x 0-005 mm) and cylindrical (0-04 mm in diameter) filaments (of identical aspect),
the latter would have, for the same X, a length 2-12 times that of the former, and values of
current and conductance (reciprocal of resistance) 2:96 times those of the former. The first-
mentioned feature would tend to the advantage of the flat filament by simplifying design
and reducing the risk of vibration, especially with the filament mounted as an edgewise
loop; while the second feature would allow the use of a smaller battery. It should be added
that, with its higher watts, the sensitivity given by the cylindrical filament would be the
greater, but this may be unimportant if that of the flat filament is adequate. The above-
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mentioned advantages are in addition to the quicker response of the flat filament (see
§3-2-2 below) and toits outstanding merits, in relation to the optics of pyrometry, established
by Fairchild & Hoover (1923).

3:2:2. Speed of response
In this section we compare the results of calculation of speed of response of pyrometer
lamps with those given by Barber (19465). For this purpose we reproduce curves from his
figures 1 and 3 on our figure 5. The curves show the time taken, from switching on, for the
filament centre to reach within 2 °C of its final value, which ranges from 800 to 1200 °C
apparent. The filaments were of two diameters, 0-06 and 0-04 mm, the latter being used in

63s atIBOO °C

20—
15—
)
g
o 10+
SN
0-06mm
diam.
}0-04
| | | mm
700 800 900 1000 1100 1200

apparent temperature (°C)

Frcure 5. Times taken for various pyrometer filaments to reach within 2 °C of final temperature.

three lengths. Our calculated curves apply to an infinitely long filament of diameter
0-04 mm, run at constant current and voltage, respectively, and are shown as dashed lines
marked ococ and cov. As already pointed out in §2-7, if a long filament is run with some
ballast resistance in series, its response curve would lie between the ¢ and » ones, but probably
closer to the former. As considerable ballast was no doubt present in Barber’s circuits and
his curve for the 0-04 x 62 mm filament falls between our two curves, we may conclude that
this length gives a response indistinguishable from that for an infinite filament. For shorter
lengths, of the same diameter, the response times are seen to be greater, the value at 800 °C
for the 24 mm filament being 2-3 times that for our coc curve.

The top curve of figure 5 relates to a filament 0-06 mm in diameter, which is about the
largest employed in pyrometers. The length (23 mm) is relatively so short that it would not
now be used on account of'its heavy temperature coefficients, as explained in the preceding
section. It will be seen that its response time for 800 °C is some 60s which is about seven
times that for its coc curve.

It is also of interest to compare our times for a cylindrical filament, 0-04 mm in diameter,
with thosefor a corresponding flat filament, for example, thattreated in the remarks following
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table 10, of cross-section 0-04 x 0-005 mm. Asshownin §2-7-2 and §2-7-3 above, the response
time is proportional to 4/p, which would make the flat filament about 4-5 times as rapid in
response as the cylindrical one.

In conclusion, we desire to acknowledge our great indebtedness to the Director of the
National Physical Laboratory for the calculations undertaken by the Mathematics Division
and the data supplied by the Physics Division. Our thanks are also due to the referees for
suggestions which have led to several clarifications.

APPENDIX. THE THEORY OF RiBAUD & NIKITINE (1927) FOR A SHORT-FILAMENT LAMP
In our notation, the basic equation for the steady state of heat flow in the filament is

d dr . o Cprp
55 (kg ) = aper( T4~ T4~ (A1)

First, define a temperature 7, which would be the temperature maintained by the current ¢
in an infinite filament of the same material and cross-section as the finite filament, so that
if po,, €, are the values of p,, ¢, at T = T, then

(Ak

20 = Aape,(Th—T4H. (A2)
If p = B’T# (B’ = constant), a linear approximation near 7" = T, is
(07 =p) [P = foo(T—=T) [T (A3)

there is a similar linear approximation if e, 7%= 4'T” (A’ = constant), and if also
ks = k (constant), the differential equation (A1) takes the simple form

d2T/dx2 = PX(T—T,),
where P2 = (0peo|AR) [(yo—Bo) T3+ (4B —7.) THT.].

(In the original treatment, 7, = 0 and P?is correspondingly simplified ; in practice, the term
in P? involving T} is negligible compared with the other term—in fact, on our assumptions
for tungsten, y, =5, f, =1 and so 4+/f,—7, = 0.) With the origin at the maximum
(x = 0 when 7" = T,,) we then obtain

To—T _
T,—T,

m

= cosh Px. (A4)

This formula corresponds with our elliptic form (2-1-5). To find a ¢, 7, relation in the
symmetrical case, the simplest method is to use 7, as a parameter, calculating ¢ from (A 2)
and 7, from (A4) with 7"=T; (or 7)) and x = L (the semi-length of the filament).

It is easy to extend this theory to cover the calculation of resistance or volts. Thus the
resistance of a section of the filament measured from 7" = 7, is, by (A3) and (A4),

r:i—fszdxm#o“’ f (70 +fo(T—T,)]dx

- ﬁfe_, fx [T, —fo(T—T,,) cosh Px] dx;

: 0¥ Pooflo(Ts
ie. r= 'OA pﬁAPTww)sthx (A5)
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